

Stage en Deep Learning / Vision par ordinateur Apprentissage profond pour le suivi forestier et la détection de la déforestation à partir d'images satellites

Structure : Institut de Recherche pour le Développement, UMR Espace-Dev

Localisation : Montpellier, Maison de la Télédétection

Durée: 6 mois

Date d'entrée en poste : Flexible

Revenu: Gratification prise en charge au taux en vigueur

Candidater: Envoyer CV et lettre de motivation à sara.mobsite@ird.fr, joris.guerin@ird.fr, laure.berti@ird.fr,

renaud.hostache@ird.fr

Contexte

Ce stage s'inscrit dans le cadre du projet européen MOSAIC (https://www.mosaic-planetaryhealth.eu/) et a pour objectif de développer des méthodes d'apprentissage profond pour produire des cartes à haute résolution de la couverture forestière et de la déforestation en Amazonie. Pour cela, des approches de segmentation sémantique seront mises en œuvre afin d'extraire automatiquement les zones forestières et les changements de couverture à partir d'images satellites. Les modèles développés seront entraînés sur des données disponibles au Brésil, puis adaptés et transférés à d'autres régions de l'Amazonie, comme la Guyane française, afin de permettre une production rapide et régulière de ces cartes dans les zones qui en manquent encore.

En raison de la forte couverture nuageuse dans la région, le travail portera sur l'intégration de données satellitaires complémentaires provenant de Sentinel-1 et de Sentinel-2, exploitées à plusieurs dates d'acquisition. L'exploitation de l'information temporelle permettra de concevoir des modèles capables de classifier avec précision la couverture forestière et de détecter les événements de déforestation, même dans des conditions d'observation difficiles.

Problématique

Le principal défi de la zone étudiée concerne la couverture nuageuse, souvent dense et persistante. Ainsi, l'analyse de l'impact de l'utilisation de données acquises à différents moments pour une même région sur les performances de segmentation constitue l'un des objectifs centraux de ce stage. Un autre enjeu réside dans la nature des données utilisées, puisque **Sentinel-1** et **Sentinel-2** fournissent des informations complémentaires : Sentinel-1 est insensible à la présence de nuages, tandis que Sentinel-2, bien que sensible à la couverture nuageuse, offre une richesse spectrale beaucoup plus importante. Une question clé consiste donc à déterminer la fréquence optimale d'exploitation des données Sentinel-2, en tenant compte à la fois des contraintes liées à la nébulosité et du grand nombre de bandes spectrales disponibles.

Objectif

Les principaux objectifs du stage sont les suivants :

- Les données sont déjà disponibles mais nécessitent un prétraitement : données Sentinel-1 et Sentinel-2 pour 25 régions d'intérêt, ainsi que leurs cartes à 10 m et 30 m de résolution issues du produit MapBiomas [1].
- Tester la performance de plusieurs modèles de segmentation sémantique à l'état de l'art [2, 3, 4, 5], avec et sans analyse temporelle, en utilisant les données annotées disponibles pour la détection des forêts et de la déforestation.
- Comparer les données d'entrée et les techniques de fusion de données afin de combiner l'information provenant des deux satellites [6], tout en analysant la fréquence optimale d'utilisation de Sentinel-2 dans le temps et en évaluant leur impact sur les performances des modèles.

Profil et compétences recherchés

- Étudiant(e) en dernière année d'école d'ingénieurs, en césure ou en Master 2 (informatique, intelligence artificielle, sciences des données), avec un intérêt pour la télédétection.
- Solides compétences en programmation Python et en apprentissage profond (PyTorch, TensorFlow, Keras ...).
- Connaissances en traitement et analyse de données spatiales (un plus apprécié).
- Bonnes capacités d'analyse, de synthèse et de rédaction.
- Curiosité scientifique, autonomie et goût pour le travail en équipe.

Références

[1] MapBiomas – Collection 2 (beta) of the Land Cover and Land Use Annual Maps of Brazil using Sentinel 2 images, accessed on [27/08/2025] through the

link:[https://storage.googleapis.com/mapbiomaspublic/initiatives/brasil/lulc_10m/collection_2/integration/mapbiomas_10m_collection2_integration_v1-classification_2023.tif]

[2] Zhang, J., Wang, Z., Bai, L., Song, G., Tao, J. and Chen, L., 2021, July. Deforestation detection based on u-net and lstm in optical satellite remote sensing images. In 2021 IEEE international geoscience and remote sensing symposium IGARSS (pp. 3753-3756). IEEE.

[3]John, D. and Zhang, C., 2022. An attention-based U-Net for detecting deforestation within satellite sensor imagery. International Journal of Applied Earth Observation and Geoinformation, 107, p.102685.

[4]Das, P.K., Sahu, A., Xavy, D.V. and Meher, S., 2023. A deforestation detection network using deep learning-based semantic segmentation. *IEEE Sensors Letters*, *8*(1), pp.1-4.

[5]De Bem, P.P., de Carvalho Junior, O.A., Fontes Guimarães, R. and Trancoso Gomes, R.A., 2020. Change detection of deforestation in the Brazilian Amazon using landsat data and convolutional neural networks. *Remote Sensing*, *12*(6), p.901.

[6] Md Jelas, I., Zulkifley, M.A., Abdullah, M. and Spraggon, M., 2024. Deforestation detection using deep learning-based semantic segmentation techniques: a systematic review. *Frontiers in Forests and Global Change*, 7, p.1300060.